7 Things to Look Out For DNA Synthesis In The Future

7 Things to Look Out For DNA Synthesis In The Future

DNA is the basic unit of a living cell and a fundamental part of most of the living organisms present.

Since the discovery of the double-helix structure of DNA by Watson and Crick, there is a lot of research going on in unfolding the mysteries of DNA and finding out the best possible use of DNA for the welfare of humans.

The main focus of scientists is on DNA synthesis, where it replicates to make another copy. This event has many potential futures uses in the synthetic biology industry and biotechnology.

What is DNA Synthesis?

DNA synthesis is the creation of DNA molecules, naturally or artificially. The process of DNA synthesis takes place at the time of cell division. The main components of DNA synthesis are:

  • Template – It is the DNA strand that initiates the process of DNA synthesis. It is copied to a complementary strand.
  • Enzymes – Enzymes like DNA polymerase and Ligase binds the upcoming nucleotides to the Primer.
  • Primer – A primer binds to the template and attaches enzymes to begin forming a complementary strand.
  • Substrate – These are the building blocks of DNA, and are called deoxyribonucleotide triphosphates (dNTPs). There are four main substrates in DNA Synthesis, which are dATP, dGTP, dTTP, and dCTP.

Things to Look Out For DNA Synthesis In The Future

Gene Therapy

After the completion of the Human Genome Project, research on gene therapy has increased because of adequate data availability. Gene therapy is a powerful tool in the field of treating inherited and monogenic disorders.

According to studies, people with single-gene mutations can be treated with the help of their own bone marrow’s stem cells, also called Hematopoietic stem cells. These stem cells contain the missing gene, which is brought by the viral cell. Many recessive disorders can be treated by gene replacement therapy.

The basic principle of gene replacement therapy is finding an adequate gene and replacing it with the defective gene. Research is currently ongoing to find more prominent viral vectors to carry recombinant DNA to the target site to cure other fatal diseases.

DNA information health advance

Synthetic Genome

Recent advancement in biotechnology has helped the scientists to get success in the development of the synthetic genome. Projects like the Synthetic Yeast Genome Project are ongoing to develop the whole yeast genome consisting of 16 chromosomes.

These projects help scientists to gather information regarding eukaryotic cells to understand them better in terms of their structure and functionality. This technique can also help create artificial strains that will be useful in the industrial and medical fields.

This genome writing technique is the beginning of a new period for synthetic genome synthesis, which can even help in creating new organisms artificially.

Cell-free protein synthesis

The functional genome of our body consists of only 20,000 to 30,000 genes, which codes for all the proteins and enzymes of our body. The high complexity present here makes the study of proteomics harder, as there is not sufficiently extracted material to study.

The technique of cell-free protein synthesis can be used as a tool for large scale production of proteins. This method prevails in the development of protein directly from the mRNA obtained from the cDNA at the time of synthesis.

According to recent studies, initial research is conducted on Escherichia Coli (E.Coli), which shows many homologies to the human genome. To carry out the technique, DNA is required as the template to get the mRNA template through native organisms or in vivo conditions.

Transgenic Plants

Considering the current need for crop products, transgenic plants can be considered as the future of agriculture. These are genetically modified plants that are created by the technique of recombinant DNA technology.

These plants are genetically modified to express the trait of interest to be superior and provide maximum yield. One such plant, which is studied most, is the cotton plant.

The plant was genetically modified to create resistance against the bacteria Bacillus Thuringiensis. This technique can create a hybrid crop plant to be resistant to diseases and provide maximum yield.

DNA data storage

With so much progress in the scientific world, a lot of new data is being created at a very fast pace. With this speed of increment in available data, carbon-based storage devices will be un-sufficient to store everything available.

To overcome this shortage of storage devices, scientists are conducting researches to use DNA as a data storage device. Due to the highly stable and highly condensed nature of DNA, scientists are looking forward to creating DNA-based storage devices that can be used for a long time. Because of the stable double helix structure of DNA, it can sustain for about 1,000 years without being damaged.

Theoretically, 1 gram of DNA can store 455 exabytes (455 billion gigabytes) data. All these properties can make it a future data storage device.

Drug production

Though we are moving towards the targeted gene therapy, achieving this goal to the level of success is a long process. In the meanwhile, treatment of hereditary and genetic disorders can be carried by functional proteins.

These proteins can be produced on a large scale using recombinant technology on the microbes cultured in the laboratory. Cells like E.coli, yeast, mammalian cells, and insect cells are most widely used in the mass production of protein. According to studies, 650 drugs are approved worldwide, and 1300 are on the clinical trial.


We rely heavily on fossil fuel, but in reality, we have a very limited supply of fossil fuels, which is on the verge of getting finished. Biofuel is a very prominent alternative to overcome this problem, and many studies are ongoing in the field of extracting biofuel efficiently and in sound amounts.

Different single-cell organisms are tested in one such study, which can digest cellulose from plant biomass and produce hydrocarbons with the property of petrochemical fuels. These microorganisms artificially designed in the laboratory conditions to produce biofuel through an economical route.


DNA synthesis is becoming a prominent solution to many of the major problems faced by us with so much advancement in biological sciences.

From the field of medicine to food, DNA synthesis has helped to get solutions that were not available anywhere else. With this technology, we can shape our future in a much better direction.

Share with your friends!

Nicolas Desjardins

Hello everyone, I am the main writer for SIND Canada. I've been writing articles for more than 10 years and I like sharing my knowledge. I'm currently writing for many websites and newspapers. All my ideas come from my very active lifestyle, every day I ask myself hundreds of questions to doctors, specialists, and physicians. I always keep myself very informed to give you the best information. In all my years as a computer scientist made me become an incredible researcher. I believe that any information should be free, we want to know more every day because we learn every day. Most of our medical sources come from Canada.ca and government research. You can contact me on our forum or by email at info@sind.ca.

Leave a Reply

Your email address will not be published.